The Incremental Relationships and Applications of Three Tooth Thickness Parameters in Spur Gear

1. Introduction

In gear transmission systems, precise control of tooth thickness is critical for minimizing backlash and ensuring smooth power transfer. Among the various parameters used to define tooth thickness in spur gear, three key measurements stand out: constant chord height (Sx)base tangent length (Wk), and span measurement with rods (M). These parameters are widely employed in gear design, manufacturing, and inspection. However, inconsistencies often arise when converting tolerances or incremental changes between these parameters, especially under different pressure angles. This paper systematically explores the incremental relationships between Sx, Wk, and M, derives conversion formulas, and provides practical applications to streamline engineering workflows for spur gear.


2. Measurement Methods of Three Tooth Thickness Parameters

2.1 Constant Chord Height (Sx)

The constant chord height measures the chord length between two symmetrical contact points of a standard rack and the spur gear tooth profile (Figure 1). Its simplified formula is:Sx=πm2cos⁡2αfSx​=2cos2αfπm

where αfαf​ is the pressure angle, and mm is the module.

Advantages:

  • Independent of the number of teeth (zz).
  • Simple calculation and measurement using tools like gear calipers.

Limitations:

  • Sensitive to radial and tangential errors.
  • Unsuitable for high-precision gears (e.g., above Grade 7 accuracy).

Applications:

  • Recommended for gears with m>1m>1 and accuracy below Grade 7 (ISO 1328-1:2013).

2.2 Base Tangent Length (Wk)

The base tangent length is the distance between two parallel planes tangent to opposite tooth flanks (Figure 2). The formula for WkWk​ is:Wk=mcos⁡αf[(k−0.5)π+z inv αf]Wk​=mcosαf​[(k−0.5)π+zinvαf​]

where kk is the number of spanned teeth, calculated as k=0.5+αfz180∘k=0.5+180∘αfz​.

Advantages:

  • Unaffected by tip diameter errors.
  • High resolution (0.05 mm) using vernier calipers.

Limitations:

  • Complex calculation due to dependency on zz.

Applications:

  • Suitable for gears with m≥0.5m≥0.5 and accuracy above Grade 7.

2.3 Span Measurement with Rods (M)

This method involves measuring the distance between two rods inserted into opposite tooth spaces (Figure 3). For even and odd zz, the formulas differ:{M=Dx+dp(even z)M=Dxcos⁡90∘z+dp(odd z){M=Dx​+dpM=Dx​cosz90∘​+dp​​(even z)(odd z)​

where Dx=cos⁡αfcos⁡αxdfDx​=cosαx​cosαf​​df​, and dpdp​ is the optimal rod diameter.

Advantages:

  • High sensitivity (ΔM≈2.75ΔSxΔM≈2.75ΔSx​ for αf=20∘αf​=20∘).
  • Immune to radial runout and tip diameter errors.

Applications:

  • Ideal for small-module gears (m<1m<1) and applications requiring strict backlash control.

3. Incremental Relationships Between Parameters

The incremental relationships allow engineers to convert tolerances or deviations between Sx, Wk, and M. These relationships depend on the pressure angle (αfαf​) and the number of teeth (zz).

3.1 Relationship Between ΔWkΔWk​ and ΔSxΔSx

A small change in SxSx​ (ΔSxΔSx​) projects onto the normal direction as ΔWkΔWk​:ΔWk=ΔSxcos⁡αfΔWk​=ΔSx​cosαf

Example: For αf=20∘αf​=20∘, ΔWk/ΔSx=0.94ΔWk​/ΔSx​=0.94.


3.2 Relationship Between ΔMΔM and ΔWkΔWk

For even zz:ΔM=ΔWksin⁡αxΔM=sinαx​ΔWk​​

For odd zz:ΔM=ΔWksin⁡αxcos⁡90∘zΔM=sinαx​ΔWk​​cosz90∘​

where αx≈αf+90∘zαx​≈αf​+z90∘​.


3.3 Relationship Between ΔMΔM and ΔSxΔSx

Combining the above equations:
For even zz:ΔM=ΔSxcos⁡αfsin⁡αxΔMSx​sinαx​cosαf​​

For odd zz:ΔM=ΔSxcos⁡αfsin⁡αxcos⁡90∘zΔMSx​sinαx​cosαf​​cosz90∘​

An approximate formula simplifies this to:ΔM≈ΔSxcot⁡αfΔM≈ΔSx​cotαf


4. Tabulated Incremental Ratios

Table 1: ΔWk/ΔSxΔWk​/ΔSx​ Ratios

αfαf​ (°)ΔWk/ΔSxΔWk​/ΔSx
200.94
150.996
14.50.968

Table 2: ΔM/ΔWkΔMWk​ Ratios for Even zz (αf=20∘αf​=20∘)

zzΔM/ΔWkΔMWk
81.93
202.41
902.79
2.92

Table 3: ΔM/ΔSxΔMSx​ Ratios for Odd zz (αf=15∘αf​=15∘)

zzΔM/ΔSxΔMSx
72.02
192.85
893.50
3.73

5. Engineering Applications

5.1 Case 1: Tolerance Conversion for αf=20∘αf​=20∘

spur gear with z=30z=30, αf=20∘αf​=20∘, and ΔSx=−0.020 mmΔSx​=−0.020mm requires calculating ΔWkΔWk​ and ΔMΔM:

  • ΔWk=ΔSxcos⁡20∘=−0.020×0.94=−0.019 mmΔWk​=ΔSx​cos20∘=−0.020×0.94=−0.019mm.
  • ΔM≈ΔSxcot⁡20∘=−0.020×2.747=−0.055 mmΔM≈ΔSx​cot20∘=−0.020×2.747=−0.055mm.

5.2 Case 2: High-Precision Gear Inspection

For a small-module spur gear (m=0.8m=0.8, z=25z=25), M-value measurement is preferred due to its high sensitivity. A measured ΔM=31 μmΔM=31μm converts to:

  • ΔSx=ΔM/cot⁡20∘=31/2.747≈11.3 μmΔSx​=ΔM/cot20∘=31/2.747≈11.3μm.

6. Discussion

The incremental relationships enable rapid tolerance conversions, enhancing efficiency in spur gear design and quality control. Key insights include:

  • Pressure Angle Impact: Lower αfαf​ (e.g., 14.5°) increases ΔM/ΔSxΔMSx​, favoring M-measurements for tight tolerances.
  • Tooth Count Sensitivity: For small zz, odd/even distinctions significantly affect ΔMΔM.
  • Method Selection:
    • Use Sx for coarse inspections.
    • Prefer Wk for mid-range accuracy.
    • Opt for M-values in high-precision or small-module scenarios.

7. Conclusion

This study establishes a unified framework for interconverting tooth thickness parameters in spur gear, supported by derivations, tabulated ratios, and real-world examples. By leveraging these relationships, engineers can streamline tolerance allocations, reduce measurement errors, and optimize gear performance across diverse applications. Future work could extend these principles to helical or bevel gears.

Scroll to Top