Design of Hobbing Chamfering Tools for Cylindrical Gears

This paper proposes a continuous chamfering method for cylindrical gears using a novel hobbing tool design. The tool profile calculation methodology and motion analysis are systematically established to address high-efficiency tooth edge processing demands.

1. Kinematic Analysis of Hobbing Chamfering

The coordinate system transformation between gear and tool is established as follows:

$$
\begin{cases}
\varphi_g = \frac{z_t}{z_g}\varphi_t \\
M_{mg} = \begin{bmatrix}
\cos\varphi_g & -\sin\varphi_g & 0 & 0 \\
\sin\varphi_g & \cos\varphi_g & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \\
M_{tm} = \begin{bmatrix}
0 & 0 & -1 & -h \\
0 & 1 & 0 & -p \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\end{cases}
$$

Table 1: Key Parameters of Cylindrical Gear Chamfering
Parameter Symbol Value (mm/°)
Chamfer width b 0.2 ±0.01
Chamfer angle α 50 ±0.5
Tooth root radius r_f 1.2m_n

2. Tool Profile Design Methodology

The tool profile is derived through iterative contact point calculation between rake face and target chamfer contour. For cylindrical gears with helix angle β, the tool installation angle is determined by:

$$
\theta_{install} = \beta \pm \arctan\left(\frac{m_n z_t}{d_t}\right)
$$

Table 2: Tool Geometry Parameters
Parameter Value
Number of starts 4
Outer diameter (mm) 70
Helix angle (°) 9.2
Rake angle (°) 15

3. Contact Point Calculation

The instantaneous contact points between tool and cylindrical gear tooth profile are calculated through coordinate transformation:

$$
\begin{bmatrix}
x_t \\
y_t \\
z_t \\
1
\end{bmatrix} = M_{tm} \cdot M_{mg} \cdot \begin{bmatrix}
x_g \\
y_g \\
z_g \\
1
\end{bmatrix}
$$

Where the tooth profile of cylindrical gears is expressed as:

$$
r(\theta) = \frac{m_n z}{2\cos\beta} \left( \cos\theta + \theta\sin\theta \right)
$$

4. Simulation and Experimental Verification

Table 3: Chamfering Quality Evaluation
Position Width (mm) Angle (°) Surface Ra (μm)
Left flank 0.198 49.8 1.2
Right flank 0.201 50.1 1.3
Tooth root 0.205 49.9 1.5

The experimental results demonstrate that the proposed cylindrical gear chamfering tool achieves:

  • Chamfer width consistency: ±0.005mm
  • Angular accuracy: ±0.2°
  • Surface roughness: Ra ≤1.5μm

$$
\Delta b = \frac{m_n z_t \sin\alpha}{\pi d_t \cos\beta} \cdot \Delta\varphi
$$

5. Conclusion

This research presents an innovative solution for cylindrical gear chamfering through:

  1. Precise tool profile calculation method
  2. Optimized hobbing motion parameters
  3. Verified chamfering quality control strategy

The developed methodology significantly improves processing efficiency (3-5 times faster than conventional methods) while maintaining high precision for cylindrical gear manufacturing applications.

Scroll to Top