Study on Sliding Rate Calculation Method for High-Reduction Hypoid Gears

This paper proposes a novel iterative calculation method for hypoid gear tooth blank parameters based on GLEASON’s design philosophy. For high-reduction hypoid gears with speed ratios up to 1:15, we establish fundamental parameter relationships through large-wheel-driven iterative computation:

$$r_2 = \frac{1}{2}(d_2 – b_2 \sin\delta_2)$$
$$\epsilon_0 = \arcsin\left(\frac{E}{r_2}\right)$$
$$k’ = \frac{1}{\cos\epsilon_0 – \tan\beta_{20}\sin\epsilon_0}$$

Typical Tooth Blank Parameters
Parameter 3:45 Gear Set 5:60 Gear Set
Speed Ratio 1:15 1:12
Offset Distance E (mm) 10 14
Spiral Angle β (°) 67.1/39.0 55.15/31.12
Pitch Cone Angle δ (°) 10.99/77.60 5.33/84.17

The kinematic analysis of hypoid gear meshing reveals the sliding rate calculation fundamentals. For any contact point M in spatial coordinates:

$$v^{(12)} = \omega^{(1)} \times r^{(1)} – \omega^{(2)} \times r^{(2)}$$
$$\sigma_1 = \frac{|dr^{(1)} – dr^{(2)}|}{|dr^{(1)}|},\ \sigma_2 = \frac{|dr^{(2)} – dr^{(1)}|}{|dr^{(2)}|}$$

The characteristic vector for hypoid gear sliding calculation derives from spatial motion parameters:

$$q = \omega^{(1)} \times (\omega^{(2)} \times r^{(2)}) – \omega^{(2)} \times (\omega^{(1)} \times r^{(1)})$$

Parameter Expression
Relative Angular Velocity $\omega^{(12)} = \omega^{(1)} – \omega^{(2)}$
Sliding Velocity $v^{(12)} = L_1\omega_1\sin\delta_1\sin\beta_1 – L_2\omega_2\sin\delta_2\sin\beta_2$
Pressure Angle $\alpha_0 = \arctan\left(\frac{L_1\sin\beta_1 – L_2\sin\beta_2}{L_1\tan\delta_1 + L_2\tan\delta_2}\right)$

The complete sliding rate formula for hypoid gears integrates all design parameters:

$$\sigma_1 = \frac{v^{(12)} \cdot n + \sqrt{\left(v^{(12)} \cdot (\omega^{(12)} \times n\right)^2 + (q \cdot n)^2}}{\sqrt{\left(v^{(12)} \cdot (\omega^{(12)} \times n\right)^2 + (q \cdot n)^2}}$$

Experimental verification with two hypoid gear sets demonstrates calculation accuracy:

Gear Set |σ₁| |σ₂|
3:45 1.2381 5.1999
5:60 0.6364 1.7505

The sliding rate difference between pinion and gear (5.1999 vs 1.2381 in 3:45 set) confirms hypoid gear’s inherent sliding characteristics. The developed method provides theoretical foundation for:

$$Wear\ Rate \propto \int (\sigma \cdot p \cdot v)dt$$
$$Surface\ Durability = f(\sigma_{max}, \Delta\sigma, N_{cycles})$$

This research establishes a complete parameterized model for hypoid gear sliding analysis, enabling precise wear prediction and lubrication optimization. Future work will extend the methodology to microgeometry-modified hypoid gears and dynamic loading conditions.

Scroll to Top