Simulation and Analysis on Power Loss of Helical Gears based on Amesim

Helical Gear Power Loss Analysis

This study investigates power loss mechanisms in helical gear transmissions for electric vehicle reducers through Amesim-based simulation. Three primary energy dissipation sources are analyzed: meshing friction loss, oil churning loss, and bearing friction loss.

1. Theoretical Framework

1.1 Meshing Friction Power Loss

The total meshing friction power loss ($P_F$) combines sliding ($P_f$) and rolling ($P_n$) components:

$$P_F = P_f + P_n$$
$$P_f = \frac{\bar{f}F_n v_s}{1000}$$
$$P_n = \frac{0.09\bar{h}v_t b \epsilon_\alpha}{\cos\beta}$$

Key parameters for helical gear meshing calculation:

Parameter Description Equation
$\bar{f}$ Mean friction coefficient $0.0127\lg\left(\frac{29600F_n\cos\beta}{b\mu v_s v_t}\right)$
$F_n$ Normal force $\frac{T}{r_1\cos\alpha\cos\beta}$
$v_s$ Sliding velocity $0.02618n_g\frac{z_1+z_2}{z_2}$

1.2 Oil Churning Loss

Churning power loss ($P_G$) comprises three components:

$$P_G = P_{C1} + P_{C2} + P_{C3}$$
$$P_{C1} = \frac{7.37f_g\mu_0 n^3 D^{4.7}L}{A_g 1026}$$
$$P_{C3} = \frac{7.37f_g\mu_0 n^3 D^{4.7}bR_f}{\tan\beta A_g 1026}$$

1.3 Bearing Power Loss

Bearing friction torque calculation using updated SKF equations:

$$P_z = \frac{(M_r + M_s + M_d + M_e)n}{9549}$$
$$M_r = G_r(\nu n)^{0.6}$$
$$G_{r(ball)} = R_1d_m^{1.96}\left(F_r + \frac{R_2F_a}{\sin[24.6(F_a/C_0)^{0.24}]}\right)^{0.54}$$

2. Simulation Modeling

Helical gear parameters for Amesim simulation:

Parameter Pinion Gear
Teeth 18 79
Module (mm) 1.75 1.75
Pressure Angle 25° 25°
Helix Angle 30° 30°

Bearing configuration parameters:

Parameter Value
Mean Diameter 40 mm
Speed-dependent Friction 2.5e-4
Viscous Friction 0.05 N·m/(r/min)

3. Results Analysis

Comparative power loss components:

Parameter Group Total Loss (W) Meshing Loss (%)
Group 1 215 68.3
Group 2 284 72.1
Group 5 163 61.9

Parametric sensitivity of helical gear power loss:

$$ \frac{\partial P_{total}}{\partial z} = -0.85\ \text{W/tooth} $$
$$ \frac{\partial P_{total}}{\partial \beta} = +2.1\ \text{W/degree} $$
$$ \frac{\partial P_{total}}{\partial h_{oil}} = +4.7\ \text{W/mm} $$

4. Optimization Strategy

Optimal parameter combination for minimum power loss:

Parameter Optimal Value Loss Reduction
Pressure Angle 25° → 28° 12.7%
Helix Angle 30° → 25° 9.3%
Oil Viscosity ISO VG68 → VG46 18.2%

5. Conclusion

The established Amesim model effectively simulates power loss characteristics in helical gear transmissions. Through parametric analysis, the optimal configuration reduces total power loss by 23.6% compared to baseline designs. This methodology provides valuable insights for energy-efficient helical gear system development in electric vehicle applications.

Scroll to Top