Calculation and Analysis of Time-Varying Meshing Stiffness for Spur Gears Using an Improved Ishikawa Method

In gear transmission systems, time-varying meshing stiffness (TVMS) is a critical parameter influencing dynamic performance, vibration characteristics, and fault diagnosis accuracy. This paper presents an enhanced analytical approach for calculating the TVMS of spur gears by modifying the traditional Ishikawa formula, incorporating gear body deformation effects through trapezoidal simplification.

1. Enhanced Ishikawa Method with Body Deformation

The improved model considers both tooth deformation and gear body flexibility through:

$$ \delta_{\Sigma} = \delta_1 + \delta_2 + \delta_{pv} + \delta_{\omega} $$

Where:
$\delta_{\omega}$ = Body deformation component
$\delta_{pv}$ = Contact deformation

2. Key Parameter Determination

Effective root circle radius calculation for spur gears:

$$ r_{F1} = \sqrt{r_{b1}^2 + (r_{b1} \tan \alpha_{a1} – B_1B_2)^2} $$
$$ r_{F2} = \sqrt{r_{b2}^2 + (r_{b2} \tan \alpha_{a2} – B_1B_2)^2} $$

Parameter Pinion Gear
Module (mm) 4.0 4.0
Teeth 25 33
Pressure Angle (°) 25 25
Elastic Modulus (GPa) 210 210

3. TVMS Formation Mechanism

For spur gears with contact ratio ε < 2:

$$ K_m = \begin{cases}
K_d & \text{(Double-tooth engagement)} \\
K_s & \text{(Single-tooth engagement)}
\end{cases} $$

4. Computational Verification

Comparison of three methods under different torques:

Torque (Nm) Method Max Single-tooth Stiffness (N/μm) Error vs FEM (%)
30 Original Ishikawa 2.61 1.95
Improved Method 2.59 1.17
FEM 2.56
400 Original Ishikawa 2.79 3.33
Improved Method 2.75 1.85
FEM 2.70

5. Dynamic Behavior Implications

The enhanced Ishikawa method reveals:

$$ \Delta K_{max} = 3.2\% \text{ at } 400\text{Nm} $$

Compared to 5.8% deviation in traditional method

6. Computational Efficiency

Time consumption comparison:

  • Improved Ishikawa: 18.7s
  • FEM: 4.2h
  • Traditional Ishikawa: 15.3s

7. Conclusion

The modified Ishikawa method demonstrates superior accuracy in spur gear TVMS calculation while maintaining computational efficiency. Key advantages include:

  1. 1.85% maximum error vs FEM
  2. Consistent performance across torque ranges
  3. Effective integration of body deformation effects

$$ \delta_{\omega} = \frac{3F_n \cos \omega_x}{2Eb} \left[ \cos\left(\arcsin\frac{h_{Di}}{r_f}\right) \frac{\sqrt{r_f^2 – (s_F/2)^2} + h_x}{r_f} \right] $$

This approach enables precise dynamic modeling of spur gear systems while avoiding the computational burden of full FEM analysis, particularly beneficial for industrial applications requiring rapid stiffness evaluation.

Scroll to Top