Analysis of Spur Gear Pair Vibration Characteristics Considering Random Error and Tooth Surface Friction

With the increasing demand for high-speed and high-power-density gear transmission systems, reducing vibration and noise has become critical. This study investigates the dynamic behavior of spur gears under the combined effects of random transmission errors and stochastic tooth surface friction parameters. We establish a three-degree-of-freedom bending-torsional coupled vibration model and analyze how these stochastic factors influence gear stability and vibration spectra.

1. Dynamic Model of Spur Gear Pair

The lumped parameter model considers six degrees of freedom (three per gear) with nonlinear coupling effects. The governing equations are:

$$m_p\ddot{x}_p + k_{xp}x_p + \sin\alpha \cdot k_m(t)\delta(t) = F_f(t)\sin\alpha$$
$$m_p\ddot{y}_p + k_{yp}y_p + \cos\alpha \cdot k_m(t)\delta(t) = -F_f(t)\cos\alpha$$
$$I_p\ddot{\theta}_p + R_p(t)k_m(t)\delta(t) = T_p(t)$$
$$m_g\ddot{x}_g + k_{xg}x_g – \sin\alpha \cdot k_m(t)\delta(t) = -F_f(t)\sin\alpha$$
$$m_g\ddot{y}_g + k_{yg}y_g – \cos\alpha \cdot k_m(t)\delta(t) = F_f(t)\cos\alpha$$
$$I_g\ddot{\theta}_g – R_g(t)k_m(t)\delta(t) = -T_g(t)$$

Where the relative displacement $\delta(t)$ is defined as:

$$\delta(t) = \sin\alpha(x_p-x_g) + \cos\alpha(y_p-y_g) + R_p\theta_p – R_g\theta_g + e(t)$$

2. Stochastic Parameter Characterization

2.1 Random Transmission Error

The composite transmission error combines deterministic and stochastic components:

$$e(t) = e_m + E\sin(\omega t + \phi) + \xi(t)$$

where $\xi(t)$ represents Gaussian white noise with $\mu=0$, $\sigma^2=0.0005$.

2.2 Stochastic Friction Parameters

Tooth surface friction coefficient varies with roughness:

$$\mu(t) = \mu_0 + \sigma_\mu\xi(t)$$

The equivalent curvature radius contains random components:

$$R_i(t) = r_i\sin\alpha_i + s_\mu + \xi(t)$$

Table 1. Key Parameters of Spur Gear Pair
Parameter Pinion Gear
Teeth 33 26
Module (mm) 7 7
Mass (kg) 10.6 7.43
Moment of Inertia (kg·mm²) 147,670 61,426

3. Numerical Analysis and Results

Using fourth-order Runge-Kutta method with step size 0.00015s, we obtain:

Table 2. Vibration Response Statistics
Direction RMS (mm/s²) Peak (mm/s²)
Pinion X 5.51 18.2
Pinion Y 15.13 49.7
Gear X 7.87 25.9

Frequency domain analysis reveals significant modulation effects:

$$S_{xx}(f) = \frac{1}{2\pi}\int_{-\infty}^{\infty}R_{xx}(\tau)e^{-j2\pi f\tau}d\tau$$

where $R_{xx}$ represents autocorrelation of vibration signals.

4. Discussion of Stochastic Effects

Key observations from parametric studies:

Table 3. Randomness Impact Comparison
Factor Acceleration Increase Stability Reduction
Transmission Error 65% High
Friction Parameters 27% Medium

The phase portraits demonstrate increased trajectory complexity under stochastic excitation:

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T \mathbf{q}(t)\mathbf{q}^T(t+\tau)dt$$

5. Conclusion

This investigation establishes that spur gear systems exhibit significantly enhanced vibration randomness under combined stochastic transmission errors and friction parameter variations. The developed model provides crucial insights for dynamic design optimization of precision gear transmissions.

Key findings include:

  1. Random transmission errors increase vibration RMS values by 65% compared to deterministic cases
  2. Stochastic friction parameters contribute 27% additional vibration energy in high-frequency bands
  3. Phase space analysis reveals chaotic tendencies under combined stochastic excitation

$$J = \int_0^{t_f} \left[\mathbf{q}^T\mathbf{W}_q\mathbf{q} + \mathbf{u}^T\mathbf{W}_u\mathbf{u}\right]dt$$

This cost function formulation enables future optimal control applications for spur gear vibration suppression.

Scroll to Top