Design and Validation of a Dual-Segment Anti-Backlash Worm Gear System for Mars Rover Optical Turret

This paper presents an innovative dual-segment anti-backlash worm gear system designed for optical turrets in Mars exploration missions. Addressing challenges including extreme temperature fluctuations (-95°C to 70°C), mass constraints (total weight < 130g), and zero-backlash requirements (positioning error < 0.01°), the proposed worm gear system achieves an 80:1 reduction ratio with 33.8% transmission efficiency while maintaining 10.62mN·m starting torque.

1. Structural Design Principles

The dual-segment worm gear configuration eliminates backlash through axial preloading, featuring:

  • Two-piece titanium alloy worm shaft with polyimide worm wheel
  • Adjustable shim (thickness: 0.5±0.003mm) for thermal compensation
  • Spring-loaded preload mechanism (10N force)

The contact stress distribution follows:

$$ \sigma_H = Z_E \sqrt{\frac{F_t}{d_1 b} \cdot \frac{u+1}{u}} $$

Where \( Z_E = 160 \sqrt{\text{MPa}} \) (material coefficient), \( F_t = 7.8\text{N} \) (tangential force), \( d_1 = 18\text{mm} \) (worm pitch diameter), \( b = 15\text{mm} \) (face width), and \( u = 80 \) (gear ratio).

2. Material Selection Analysis

Material Density (g/cm³) Thermal Expansion (10⁻⁶/K) Strength (MPa)
Polyimide YS20 1.48 3.0 130
Ti-6Al-4V 4.51 8.6 895
Beryllium 1.85 11.3 243

The polyimide-titanium combination reduces mass by 62% compared to steel alternatives while maintaining sufficient wear resistance through carbon-doped self-lubrication (\( \mu = 0.1-0.12 \)).

3. Worm Gear Parameter Optimization

Parameter Worm Wheel
Module (mm) 1.6 1.6
Teeth Count 1 80
Pitch Diameter (mm) 18 128
Face Width (mm) 15 35

Bending safety factors verify design robustness:

$$ S_F = \frac{\sigma_{FP}}{K_A K_V K_{mB} \sigma_t} = 15.6 $$

Where \( \sigma_{FP} = 42\text{MPa} \) (allowable bending stress), \( K_A = 1.25 \) (application factor), \( K_V = 1.1 \) (dynamic factor), and \( K_{mB} = 1.3 \) (load distribution factor).

4. Thermal Compensation Mechanism

The adjustable shim thickness compensates for differential thermal expansion:

$$ \Delta s = (\alpha_{\text{worm}} – \alpha_{\text{wheel}}) \cdot L \cdot \Delta T $$

With \( \alpha_{\text{worm}} = 8.6 \times 10^{-6}/\text{K} \), \( \alpha_{\text{wheel}} = 3.0 \times 10^{-6}/\text{K} \), \( L = 73\text{mm} \) (center distance), and \( \Delta T = 160\text{K} \) (operating range), the required shim adjustment is:

$$ \Delta s = (8.6 – 3.0) \times 10^{-6} \times 73 \times 160 = 0.065\text{mm} $$

5. Performance Validation

Environmental testing protocol:

Test Conditions Duration
Thermal Cycling -95°C ↔ +70°C, 6 cycles 48h
Random Vibration 14.1Grms, 3 axes 3min/axis
Life Test 0.5N·m @ 100rpm 3×10⁵ cycles

Post-test inspection showed:

  • Tooth contact pattern maintained >80% coverage
  • Backlash variation < 0.002mm
  • Surface roughness Ra < 0.4μm

6. Conclusion

The dual-segment worm gear design successfully addresses Mars mission requirements through:

  1. Mass reduction via polymer-metal material pairing
  2. Thermally stable backlash compensation
  3. Vibration-resistant preload mechanism

This worm gear configuration enables precision pointing (<0.005° repeatability) for optical payloads while withstanding Martian environmental extremes, demonstrating viability for future deep space applications.

Scroll to Top