Design Methodology of Universal Skiving Tools for Involute Cylindrical Gears

This paper presents a systematic approach for designing universal skiving tools applicable to involute cylindrical gears with arbitrary rake geometries. By leveraging line-contact meshing theory between staggered-axis involute helicoids, the methodology eliminates theoretical edge errors while maintaining regrinding stability. Key geometrical relationships and parametric derivations are demonstrated through analytical modeling and numerical verification.

1. Fundamentals of Skiving Process

The skiving mechanism employs crossed-axis kinematics where the tool (angular velocity ωt) and workpiece (ωp) rotate synchronously with fixed shaft angle Σ. The process achieves material removal through controlled relative motion:

$$ \mathbf{v}_{rel} = \mathbf{v}_t – \mathbf{v}_p = (\omega_t \times \mathbf{r}_t) – (\omega_p \times \mathbf{r}_p) $$

2. Line Contact Conditions for Staggered-Axis Involute Helicoids

For conjugate meshing between two involute helicoids, three essential conditions must be satisfied:

Parameter Expression
Shaft angle Σ = βb1 ± βb2
Center distance a = rb1 ± rb2
Velocity ratio ω12 = (rb2cosβb2)/(rb1cosβb1)

The parametric equation of conjugate helicoids is expressed as:

$$ \begin{cases}
x = r_b\cos(\theta \pm \mu_b) + t\cos\lambda_b\sin(\theta \pm \mu_b) \\
y = r_b\sin(\theta \pm \mu_b) – t\cos\lambda_b\cos(\theta \pm \mu_b) \\
z = p\theta \mp t\sin\lambda_b
\end{cases} $$

3. Cutting Edge Formulation

The cutting edge is derived from the intersection between rake face and involute helicoid. For a planar rake face with normal vector nr:

$$ \mathbf{n}_r \cdot (\mathbf{r} – \mathbf{r}_0) = 0 $$

Substituting helicoid coordinates yields the edge equation:

$$ \begin{cases}
T = \frac{p\theta\cos\beta_b + r_b[\sin(\theta-\mu_b)\sin\beta_b – \cos(\theta-\mu_b)\tan\gamma]}{ \sin\lambda_b\cos\beta_b + \cos\lambda_b[\cos(\theta-\mu_b)\sin\beta_b + \sin(\theta-\mu_b)\tan\gamma]} \\
x_e = r_b\cos(\theta-\mu_b) + T\cos\lambda_b\sin(\theta-\mu_b) \\
y_e = r_b\sin(\theta-\mu_b) – T\cos\lambda_b\cos(\theta-\mu_b) \\
z_e = p\theta – T\sin\lambda_b
\end{cases} $$

4. Flank Surface Modeling

The flank surface maintains constant edge accuracy after regrinding through helical motion:

Parameter Definition
Helix parameter pc = rb\tan(\pi/2 – \beta_b)
Relief angle control Δμ = pc\theta_c[\tan(\beta_b+\alpha_c) – \tan\beta_b]/rb

The flank surface equation becomes:

$$ \mathbf{r}_f(\theta,\theta_c) = \begin{bmatrix}
\cos\theta_c & -\sin\theta_c & 0 & 0 \\
\sin\theta_c & \cos\theta_c & 0 & 0 \\
0 & 0 & 1 & p_c\theta_c \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_e(\theta,\Delta\mu) \\
y_e(\theta,\Delta\mu) \\
z_e(\theta,\Delta\mu) \\
1
\end{bmatrix} $$

5. Process Parameter Calculation

Critical skiving parameters for cylindrical gear manufacturing:

Parameter External Gear Internal Gear
Shaft angle (Σ) βbt + βbp bt – βbp|
Center distance (a) rbp + rbt rbp – rbt
Offset (ρ) ρ = rfp\cos\theta_p + rat\cosΣ\cos\theta_t ρ = rfp\cos\theta_p – rat\cosΣ\cos\theta_t
Speed relationship ωt = (rbp\cos\beta_{bp}/rbt\cos\beta_{bt})ω_p – (\sin\beta_{bp}/rbt\cos\beta_{bt})f

6. Verification and Application

Numerical verification using VERICUT demonstrates the universal tool’s capability for various cylindrical gears:

Workpiece Type Teeth Helix Angle Max Error (mm)
Gear A External spur 125 0.008
Gear B Internal spur 125 0.009
Gear C External helical 70 18.7° 0.012
Gear D Internal helical 100 14.1° 0.011

The developed methodology enables error-free generation of cylindrical gear tooth profiles across different helix angles and tooth forms. This universal approach significantly reduces tool inventory requirements while maintaining machining precision.

Scroll to Top