Dynamic Modeling and Analysis of Multi-State Meshing Behavior in Internal Spur Gear Systems

This paper presents a comprehensive dynamic model for internal spur gear systems incorporating time-varying backlash and energy dissipation. The proposed model addresses five distinct meshing states through an improved Johnson contact formulation, providing critical insights for optimizing spur gear performance under varying operational conditions.

1. Dynamic Meshing Force Formulation

The contact force model for spur gear pairs combines Johnson’s impact theory with Lankarani’s energy dissipation correction:

$$F_m = [aD(\tau) + b]LE^*\left(\frac{x}{D(\tau)}\right)^n\left[1 + \frac{3(1-c_e^2)}{4}\frac{\dot{x}}{\dot{x}^{(-)}}\right]$$

Where:

Parameter Expression
Contact stiffness coefficient $a = \begin{cases} 0.965 & 50\mu m < \Delta R \leq10\ \text{mm} \\ 0.39 & 10\ \text{mm} < \Delta R <500\ \text{mm} \end{cases}$
Nonlinear exponent $n = \begin{cases} Y\Delta R^{-0.005} & 50\mu m < \Delta R \leq10\ \text{mm} \\ 1.094 & 10\ \text{mm} < \Delta R <500\ \text{mm} \end{cases}$
Restitution coefficient $c_e = 0.8$

2. Tribological Considerations

The EHL friction model for spur gear teeth interaction:

$$\mu_i(t) = \frac{\lambda_i(t)e^{f[S_{Ri}(t), P_{hi}(t), \eta_M, R_{aavg}]}}{P_{hi}^{b_2}S_{Ri}^{b_3}(t)}\left(\frac{v_{ei}(t)}{2}\right)^{b_6}\eta_M^{b_7}\rho_{hi}^{b_8}(t)$$

Key parameters for spur gear contact analysis:

Parameter Value
Dynamic viscosity $\eta_M = 0.058$ Pa·s
Surface roughness $R_{aavg} = (R_{a1} + R_{a2})/2$
Hertzian pressure $P_{hi}(t) = \frac{f_e}{\pi\sqrt{\rho_{ri}(t)(1-\nu^2)/E}}$

3. Multi-State Meshing Dynamics

The dimensionless governing equation for spur gear systems:

$$\ddot{x}_3 + h(\tau,x_3)\{kf[x_3,D(t)] + c\dot{x}_3\} = F + \epsilon\omega^2\cos(\omega t)$$

Five meshing states classification:

State Condition
Double-tooth drive-side $x_3 \geq D_d$
Single-tooth drive-side $x_3 \geq D_s$
Double-tooth back-side $x_3 \leq -D_d$
Single-tooth back-side $x_3 \leq -D_s$
Disengagement $|x_3| < D_d$

4. Nonlinear Dynamics Characterization

The equivalent mass formulation for spur gear pairs:

$$m_e = \frac{I_pI_g}{R_{bp}^2I_p + R_{bg}^2I_g}$$

Critical frequency ratios governing spur gear behavior:

$$\omega = \frac{\omega_h}{\omega_n},\ \omega_n = \sqrt{\frac{k_{av}}{m_e}}$$

Key spur gear parameters used in simulations:

Parameter Pinion Gear
Teeth 21 84
Module (mm) 5
Pressure angle 20°
Face width (mm) 50

5. Bifurcation Analysis

The normalized force equation reveals complex spur gear dynamics:

$$\ddot{x} + h(\tau,x)\{k\tanh\left(\frac{x}{D}\right) + c\dot{x}\} = F + \epsilon\omega^2\cos(\omega\tau)$$

Distinct operational regimes observed in spur gear systems:

Frequency Range Dynamic Behavior
$\omega < 0.5$ Periodic single-tooth meshing
$0.5 < \omega < 1.2$ Double-tooth impact transitions
$1.2 < \omega < 2.0$ Chaotic meshing state alternation
$\omega > 2.0$ Stabilized periodic response

The proposed model enables accurate prediction of spur gear system behavior across various meshing states, providing critical insights for design optimization and vibration control in high-performance transmission systems.

Scroll to Top