Dynamic Modeling, Modification, and Experimental Verification of Spur Gear Systems with Faults

This paper presents a comprehensive analysis of spur gear dynamics under various fault conditions, focusing on time-varying mesh stiffness calculation, system parameter modification, and experimental validation. The study employs lumped parameter modeling and energy methods to characterize gear faults while addressing practical implementation challenges through model refinement techniques.

1. Spur Gear Dynamics Fundamentals

The bending-torsion coupled vibration model for spur gears considers six degrees of freedom (4 translational, 2 rotational). The governing equations are expressed as:

$$M\ddot{\delta} + C\dot{\delta} + K\delta = F$$

Where mass matrix M, damping matrix C, and stiffness matrix K are defined as:

$$M = \begin{bmatrix}
m_p & 0 & 0 & 0 & 0 & 0 \\
0 & m_p & 0 & 0 & 0 & 0 \\
0 & 0 & I_p & 0 & 0 & 0 \\
0 & 0 & 0 & m_g & 0 & 0 \\
0 & 0 & 0 & 0 & m_g & 0 \\
0 & 0 & 0 & 0 & 0 & I_g
\end{bmatrix}$$

2. Time-Varying Mesh Stiffness Analysis

Parameter Driver Gear Driven Gear
Number of Teeth 23 84
Module (mm) 2 2
Pressure Angle 20° 20°
Mass (kg) 0.22 1.9

The total mesh stiffness for spur gears combines multiple energy components:

$$\frac{1}{K_m} = \sum\left(\frac{1}{K_b} + \frac{1}{K_s} + \frac{1}{K_a} + \frac{1}{K_h} + \frac{1}{K_f}\right)$$

Where:
– $K_b$: Bending stiffness
– $K_s$: Shear stiffness
– $K_a$: Axial compressive stiffness
– $K_h$: Hertzian contact stiffness
– $K_f$: Fillet foundation stiffness

3. Fault Modeling for Spur Gears

3.1 Cracked Tooth Stiffness

Crack depth modifies effective cross-section properties:

$$I_x^{crack} = \begin{cases}
\frac{1}{12}(h_x + h_x)^3W & h_x \leq h_q \\
\frac{1}{12}(h_x + h_q)^3W & h_x > h_q
\end{cases}$$

3.2 Pitting Defect Stiffness

Pitting reduces effective contact width:

$$\Delta W_x = \begin{cases}
W_s & x \in \left[\mu – \frac{a_s}{2}, \mu + \frac{a_s}{2}\right] \\
0 & \text{otherwise}
\end{cases}$$

4. System Parameter Modification

Support stiffness and damping identification through frequency response functions:

$$\begin{bmatrix}
X \\
Y
\end{bmatrix} = \frac{1}{H}\begin{bmatrix}
m – \frac{2jc_{yy}}{\omega} – \frac{2k_{yy}}{\omega^2} & \frac{2k_{xy}}{\omega^2} + \frac{2jc_{xy}}{\omega} \\
\frac{2k_{yx}}{\omega^2} + \frac{2jc_{yx}}{\omega} & m – \frac{2jc_{xx}}{\omega} – \frac{2k_{xx}}{\omega^2}
\end{bmatrix}
\begin{bmatrix}
F_x \\
F_y
\end{bmatrix}$$

5. Experimental Validation

Key experimental parameters for spur gear validation:

Condition Rotation Speed Sampling Rate Duration
Healthy 1800 RPM 51.2 kHz 30s
Cracked 1800 RPM 51.2 kHz 30s
Pitted 1800 RPM 51.2 kHz 30s

The characteristic frequency components for spur gear diagnosis:

$$f_m = \frac{z_n}{60},\quad f_r = \frac{n}{60}$$

Where:
– $f_m$: Mesh frequency
– $f_r$: Rotation frequency
– $z$: Number of teeth
– $n$: Rotation speed (RPM)

6. Fault Signature Analysis

Dynamic response comparison shows distinct features:

Condition Time-Domain Feature Frequency-Domain Feature
Healthy Uniform amplitude Clear mesh harmonics
Cracked Periodic impulses Sideband modulation
Pitted Amplitude modulation Wideband excitation

The proposed methodology enables accurate spur gear fault diagnosis with 92.7% classification accuracy in experimental validation, demonstrating superior performance compared to conventional envelope analysis (84.3%) and wavelet transform methods (78.9%).

$$Classification\ Accuracy = \frac{N_{correct}}{N_{total}} \times 100\%$$

This comprehensive approach provides fundamental insights for developing intelligent maintenance systems for spur gear transmissions in industrial applications.

Scroll to Top