High-Order Non-Circular Helical Gear Design Based on Conversion Method of Tooth Profile

This paper presents an innovative approach for designing high-order non-circular helical gears by combining conversion method of tooth profile with intersection curves from involute helicoid surfaces. The methodology addresses inherent challenges in traditional spiral line projection while maintaining computational efficiency for practical engineering applications.

1. Fundamental Theory of Non-Circular Gearing

1.1 Pitch Curve Parameterization

The pitch curve equation for primary and driven gears in polar coordinates:

$$ \rho_1(\theta_1) = \frac{p_1}{1 – k_1\cos n_1\theta_1} $$
$$ \rho_2(\theta_2) = \frac{p_2}{1 + k_2\cos n_2\theta_2} $$

Where parameters satisfy:

$$ p_2 = \frac{n_2p_1}{n_2 – k_1^2(n_2 – 1)} $$
$$ k_2 = \frac{k_1}{n_2 – k_1^2(n_2 – 1)} $$

Parameter Symbol Primary Gear Driven Gear
Order n 1 3
Eccentricity k 0.15 0.0505
Module (mm) mt 2.8978 2.8978

1.2 Helical Line Optimization

The involute helicoid equation in parametric form:

$$ \begin{cases}
x_j = r_{bj}\cos\phi_j + u_j\cos\beta_b\sin\phi_j \\
y_j = r_{bj}\sin\phi_j – u_j\cos\beta_b\cos\phi_j \\
z_j = p_j\phi_j – u_j\sin\beta_b
\end{cases} $$

Where $p_j = r_{bj}\tan\beta_b$, demonstrating how intersection curves replace traditional spiral lines for improved meshing alignment.

Helical Gear Structure

2. Modeling Process for High-Order Non-Circular Helical Gears

2.1 Parameter Configuration

Key parameters for helical gear design:

$$ \beta_b = \arctan(\tan\beta\cdot\cos\alpha_t) $$
$$ m_t = \frac{m_n}{\cos\beta} $$

Table 2: Helical Gear Design Parameters
Normal Module 3mm
Helix Angle 15$^{\circ}$
Face Width 50mm
Pressure Angle 20$^{\circ}$

2.2 Curvature Analysis

Curvature radius calculation:

$$ r_{min} = \min\left[\frac{(\rho^2 + (\frac{d\rho}{d\theta})^2)^{3/2}}{\rho^2 + 2(\frac{d\rho}{d\theta})^2 – \rho\frac{d^2\rho}{d\theta^2}}\right] $$

Ensuring proper tooth root clearance:

$$ h_a^*m \leq r_{min}\sin^2\alpha $$

3. Kinematic Simulation and Verification

Motion transmission relationship:

$$ \omega_2 = \frac{\omega_1}{3.0612 – 0.6093\cos(60t)} $$

Collision detection shows maximum center distance adjustment:

$$ \Delta a = 130.658\text{mm} – 130.197\text{mm} = 0.35\% $$

4.1 Key Advantages

  • Improved load distribution through optimized intersection curves
  • Enhanced manufacturing efficiency via batch parameter processing
  • 0.35% center distance adjustment resolving interference issues

4.2 Implementation Considerations

Critical factors for successful helical gear implementation:

$$ \beta_b = 14.08^{\circ} $$
$$ z_2 = n_2z_1 = 63 $$

Demonstrating the methodology’s effectiveness in high-order non-circular helical gear design for variable transmission applications.

Scroll to Top