Mathematical Model for Hypoid Gear Hobbing Based on Spiroflex Method

This paper presents a comprehensive mathematical framework for hypoid gear generation using the Spiroflex method on 6-axis CNC gear cutting machines. The model bridges traditional cradle-type machine settings with modern Cartesian coordinate systems through kinematic transformations, enabling precise tooth surface generation.

1. Coordinate System Transformation

The mathematical foundation starts with coordinate transformations between traditional cradle-type machines and modern 6-axis CNC systems. The transformation matrix for hypoid gear generation can be expressed as:

$$ M_{lt} = M_{ll’}M_{l’d}M_{dc}M_{cb}M_{ba}M_{at’}M_{t’t} $$

Key parameters in the transformation include:

Parameter Description
Ψb Workpiece rotation axis tilt angle
ΔΨa Cutter rotation axis angular increment
Em Vertical offset
γm Machine root angle

2. Cutting Tool Geometry

The face-hobbed cutter geometry is defined by two distinct edge segments:

Straight edge:
$$ x_l^{(l)}(\alpha_F;u) = \pm u\sin\alpha_F $$
$$ z_l^{(l)}(\alpha_F;u) = u\cos\alpha_F $$

Fillet edge:
$$ x_l^{(f)}(\alpha_F,\rho_o,h_r;u) = \pm(x_{cf} – \rho_o\cos u) $$
$$ z_l^{(f)}(\alpha_F,\rho_o,h_r;u) = z_{cf} + \rho_o\sin u $$

Typical Tool Parameters for Hypoid Gears
Parameter Pinion Gear
Blade groups (z0) 13 13
Reference height (hr) 3.99-3.88 mm 4.05-3.92 mm
Pressure angle (αF) 20.9°-19.09° 16.3°-23.7°

3. Tooth Surface Generation

The meshing equation for hypoid gear tooth surfaces is derived as:

$$ f_1(u,\beta,\phi_c) = n_1(u,\beta,\phi_c) \cdot v_1^{(lt)}(u,\beta,\phi_c) = 0 $$

Where the normal vector and relative velocity are calculated through partial derivatives:

$$ n_1 = \frac{\partial r_1}{\partial u} \times \frac{\partial r_1}{\partial\beta} $$
$$ v_1^{(lt)} = \frac{\partial r_1}{\partial\phi_c}\dot{\phi}_c $$

4. Machine Settings Conversion

The critical angular relationships for 6-axis CNC machines are:

$$ \Psi_c = \pm\arccos(a_{13}) $$
$$ \Delta\Psi_a = \arctan\left(\frac{\pm a_{12}}{\pm a_{11}}\right) $$
$$ \Delta\Psi_b = \arctan\left(\frac{\pm a_{23}}{\pm a_{33}}\right) $$

Converted Machine Settings for CNC Hypoid Gear Cutting
Parameter Pinion Gear
Workpiece tilt (Ψc) 16.43° 71.30°
Cutter offset (cx) -0.48 mm -0.17 mm
Vertical alignment (cz) 1.59 mm -3.30 mm

5. Verification and Error Analysis

The mathematical model was validated through VERICUT simulation, showing excellent agreement with theoretical hypoid gear geometry:

$$ \Delta t_{pinion} = +3.8\mu m $$
$$ \Delta t_{gear} = -39.62\mu m $$

Tooth surface position errors remained below 50μm across all measured points, demonstrating the model’s effectiveness in hypoid gear manufacturing.

6. Computational Implementation

The complete coordinate transformation matrix for hypoid gear generation combines seven transformation components:

$$ M_{lt} = \begin{bmatrix}
\cos\Psi_b\cos\Delta\Psi_b & -\sin\Delta\Psi_b & \sin\Psi_b\cos\Delta\Psi_b & T_x \\
\cos\Psi_b\sin\Delta\Psi_b & \cos\Delta\Psi_b & \sin\Psi_b\sin\Delta\Psi_b & T_y \\
-\sin\Psi_b & 0 & \cos\Psi_b & T_z \\
0 & 0 & 0 & 1
\end{bmatrix} $$

Where translation components are calculated as:

$$ T_x = (M_d + H_f + k_x)\cos\Psi_c – k_z\sin\Psi_c $$
$$ T_y = E_m + c_z $$
$$ T_z = -(M_d + H_f + k_x)\sin\Psi_c – k_z\cos\Psi_c $$

This mathematical framework enables precise hypoid gear manufacturing on modern CNC machines while maintaining compatibility with traditional cradle-type machine settings.

Scroll to Top