Numerical Simulation and Parameter Optimization of Warm Forging Process for Automotive Spiral Bevel Gears

Spiral bevel gears are critical components in automotive transmission systems, characterized by high load capacity, smooth operation, and low noise. This study investigates the warm forging process of spiral bevel gears using finite element analysis to optimize forming parameters and improve manufacturing efficiency.

Material Properties and Geometric Modeling

The X38CrMoV5-3 alloy steel was selected for its excellent mechanical properties:

Elastic Modulus (GPa) Poisson’s Ratio Yield Strength (MPa) Thermal Expansion (K-1)
215 0.28 1800 1.1×10-5

The geometric parameters of spiral bevel gears were calculated using Gleason’s formulas:

$$h_k = 1.70m$$
$$h_t = 1.888m$$
$$X_e = R_e\cos\delta – h_{ae}\sin\delta$$

Design Parameters of Spiral Bevel Gears
Parameter Pinion Gear
Module (mm) 2.54 2.54
Number of Teeth 20 40
Working Depth (mm) 1.778 2.540

Warm Forging Process Optimization

The orthogonal experimental design considered two key factors:

$$T_{forge} = [550, 600, 650, 700]^\circ C$$
$$F_{punch} = [1000, 2000, 3000, 4000] N$$

Orthogonal Experimental Results
Case Temperature (°C) Load (N) Max Stress (MPa) Displacement (mm)
L8 600 4000 1548 0.2499
L16 700 4000 1785 0.2545

The contact stress analysis confirmed the forged gears’ reliability:

$$\sigma_H = Z_E\sqrt{\frac{2000T_1}{bd_{e1}^2}\cdot\frac{Z_I}{K_A K_V K_{H\beta}}}$$
$$\sigma_{HP} = \frac{\sigma_{Hlim}Z_{NT}Z_W}{S_H K_\theta Z_Z}$$

Contact Stress Parameters
Parameter Value
Elastic Coefficient (ZE) 173.8 MPa0.5
Dynamic Factor (KV) 1.0
Hardness Ratio (ZW) 1.0

Thermal-Mechanical Analysis

The temperature distribution during warm forging significantly affects material flow:

$$\nabla \cdot (k\nabla T) = \rho C_p\frac{\partial T}{\partial t} + \dot{q}_{plastic}$$

Where plastic heat generation is calculated as:

$$\dot{q}_{plastic} = \eta\sigma_{eff}\dot{\varepsilon}_{eff}$$

Conclusion

Optimal parameters for spiral bevel gear warm forging were identified as 600°C and 4000N punch load, achieving 1548MPa stress and 0.2499mm displacement. The numerical model demonstrated effective prediction of forming behavior and contact stress distribution, providing valuable guidance for industrial production.

Scroll to Top