Numerical Simulation of Spiral Bevel Gear Quenching Based on Thermo-Fluid-Solid Coupling Model

This study investigates the quenching behavior of 45 steel spiral bevel gears using thermo-fluid-solid coupling simulation, focusing on the influence of quenching medium flow velocity. The spiral bevel gear geometry parameters are summarized in Table 1, with key features illustrated through computational modeling:

Spiral bevel gear geometry
Table 1. Geometric Parameters of Spiral Bevel Gear
Parameter Value Parameter Value
Number of teeth 20 Tooth face width 23 mm
Module 4 mm Mean pressure angle 20°
Spiral angle 35° Pitch diameter Ø65 mm

1. Thermo-Fluid-Solid Coupling Framework

The governing equations for fluid-solid interaction at the coupling interface are expressed as:

$$y^+ \equiv \frac{\rho C_\mu^{1/4} k_p^{1/2} y_p}{\mu}$$

$$T^+ = \frac{(T_p – T_w)\rho C_p C_\mu^{1/4} k_p^{1/2}}{q_w} = \frac{\sigma_T}{\kappa}\ln(Ey^+) + \sigma_T P$$

For phase transformation kinetics during quenching:

$$f_{i+1} = 1 – \exp\left[-b_{i+1}(t^*_{i+1} + \Delta t)^{n_{i+1}}\right]$$

$$t^*_{i+1} = \left[-\frac{\ln(1-f_i)}{b_{i+1}}\right]^{1/n_{i+1}}$$

2. Flow Field Characteristics

The velocity distribution of N32 quenching oil (kinematic viscosity 32 cSt at 40°C) reveals significant spatial variations around spiral bevel gear teeth:

Table 2. Velocity Distribution at Different Zones
Location Velocity (m/s) Heat Transfer Coefficient (W/m²K)
Tooth tip 0.108-0.215 2850-3200
Tooth flank 0.452-0.687 1950-2350
Root area 0.089-0.132 1650-1850

3. Phase Transformation Dynamics

The martensitic transformation follows Koistinen-Marburger equation:

$$f_M = 1 – \exp[-\alpha_b(M_s – T)]$$

where $\alpha_b = 0.011$ K⁻¹ for 45 steel, $M_s = 345°C$. The stress-strain relationship incorporates multiple contributions:

$$d\varepsilon_{ij} = \frac{1+\nu}{E}d\sigma_{ij} + \frac{3}{2H}\frac{d\sigma_i}{\sigma_i}\sigma_{ij} + \alpha_c dT + \sum_{i=1}^n \beta_i^T df_i + 3K(1-f_i)\delta_{ij}df_i$$

4. Residual Stress and Hardness Distribution

Optimal quenching results are achieved at 2 m/s flow velocity, showing superior hardness and compressive stress distribution:

Table 3. Mechanical Properties at Characteristic Points
Location Hardness (HRC) Residual Stress (MPa)
Tooth tip 52.0 ± 0.8 -39.7 ± 2.1
Tooth flank 47.9 ± 1.2 -14.8 ± 1.5
Root area 41.5 ± 1.5 -7.8 ± 0.9

The thermal gradient during quenching follows Fourier’s law:

$$\nabla \cdot (\lambda \nabla T) + Q = \frac{\partial (\rho C_p T)}{\partial t}$$

where $Q$ represents latent heat from phase transformations:

$$Q = \sum_{i=1}^n \Delta H_i \frac{df_i}{dt}$$

5. Validation and Applications

The thermo-fluid-solid coupling model demonstrates 9.2% maximum relative error compared to experimental measurements, outperforming traditional convection-based simulations (7.4% error). This approach enables precise prediction of spiral bevel gear quenching distortion patterns and residual stress fields, particularly critical for aerospace and automotive transmission systems requiring micron-level accuracy.

For spiral bevel gear manufacturing, the numerical framework provides:

  • Quantitative analysis of vapor blanket formation dynamics
  • Prediction of non-uniform cooling rates across complex tooth profiles
  • Optimization of quenching medium flow parameters
Scroll to Top