Precision Design and Error Sensitivity Analysis of Worm Gear Turntables Based on Multi-Body System Theory

This study establishes a mathematical framework for optimizing the transmission accuracy of worm gear-driven precision turntables by integrating multi-body system dynamics with error sensitivity analysis. By quantifying critical error sources and their propagation mechanisms, we propose a systematic approach to enhance manufacturing precision while balancing economic feasibility.

1. Structural Dynamics of Worm Gear Turntables

The worm gear turntable system comprises four subsystems: sliding platform, worm shaft assembly, worm wheel assembly, and rotary worktable. The kinematic chain follows:

$$ \text{Sliding Platform} \rightarrow \text{Worm Shaft} \rightarrow \text{Worm Wheel} \rightarrow \text{Worktable} \rightarrow \text{Load} $$

2. Multi-Body Error Propagation Model

Coordinate transformation matrices between adjacent bodies (Ki and Kj) account for positional and angular errors:

$$ \mathbf{P}_i = \mathbf{T}_{ij}^P \cdot \mathbf{T}_{ij}^{PE} \cdot \mathbf{T}_{ij}^S \cdot \mathbf{T}_{ij}^{SE} \cdot \mathbf{P}_j $$

Where:

  • $\mathbf{T}_{ij}^P$: Ideal position transformation
  • $\mathbf{T}_{ij}^{PE}$: Position error matrix
  • $\mathbf{T}_{ij}^S$: Ideal motion transformation
  • $\mathbf{T}_{ij}^{SE}$: Motion error matrix

3. Error Sensitivity Quantification

The total positioning error vector is derived as:

$$ \mu = \begin{bmatrix} \mu_x \\ \mu_y \\ \mu_z \end{bmatrix} = \mathbf{P}_{act} – \mathbf{P}_{ideal} $$

Normalized sensitivity coefficients for critical error sources:

$$ \lambda_j = \frac{|\partial f/\partial \theta_j|}{\sum_{k=1}^m |\partial f/\partial \theta_k|} $$

Error Source $\mu_x$ Sensitivity $\mu_y$ Sensitivity $\mu_z$ Sensitivity
$\varepsilon_{x0}(y_1)$ 0 0.552 0.015
$\delta_x(z_3)$ 0.430 0.447 0.554
$\sigma_x(x_4)$ 0.430 0.447 0.554

4. Precision Optimization Strategy

Key error control parameters for worm gear systems:

$$ \Delta\theta_{total} = \sum_{i=1}^n \frac{\partial f}{\partial \theta_i} \Delta\theta_i $$

Error Component Baseline (” ) Optimized (” )
Axial Perpendicularity 5.0 2.9
Rotational Error 8.0 3.9

5. Experimental Validation

Laser interferometry tests demonstrated:

$$ \text{Positioning Accuracy: } 3.9″ \pm 0.5″ $$
$$ \text{Repeatability: } 3.0″ \pm 0.3″ $$

6. Conclusion

The proposed multi-body error model effectively identifies critical sensitivity parameters in worm gear systems, enabling precision improvements exceeding 40%. This methodology provides a theoretical foundation for high-accuracy turntable design while maintaining cost efficiency through targeted error source control.

Scroll to Top