Prediction of Gear Pitting Life Based on Multi-Axial Fatigue Criterion

Introduction

Pitting-induced gear failure remains a critical challenge in power transmission systems, accounting for over 80% of surface fatigue life during crack initiation. This study establishes a physics-based model integrating gear dynamics, elastohydrodynamic lubrication (EHL), and multi-axial fatigue theory to predict pitting life. Unlike uniaxial approaches, our model employs the critical plane method to address the complex stress states driving gear failure mechanisms.

Gear Dynamics Analysis

Gear meshing generates time-varying contact parameters critical for fatigue prediction. Key kinematic relationships govern engagement:

$$R_1 = r_1 \sin\alpha_p + D, \quad R_2 = r_2 \sin\alpha_p – D$$

where \(R_1\), \(R_2\) are curvature radii, \(r_1\), \(r_2\) pitch radii, \(\alpha_p\) pressure angle, and \(D\) distance from pitch point. Entrainment velocity \(u_e\) and sliding velocity \(u_s\) evolve dynamically:

$$u_e = \frac{u_1 + u_2}{2}, \quad u_s = |u_1 – u_2|$$

Load distribution follows quasi-static principles with single/double-tooth transitions:

Meshing Phase Load Transition
Double-to-single engagement \(W = \frac{2}{3}F \rightarrow F\)
Single-to-double engagement \(W = F \rightarrow \frac{2}{3}F\)

These transient conditions accelerate gear failure through cyclic stress accumulation.

Thermal Elastohydrodynamic Lubrication Model

A 2D moving-average filter simulates post-running-in roughness, preserving morphological features while reducing asperity heights by 20-50%:

$$\delta_{\text{filtered}} = \frac{1}{mn}\sum_{i=1}^{m}\sum_{j=1}^{n} \delta_{\text{raw}}(x_i,y_j)$$

The modified Reynolds equation governs transient lubrication:

$$\frac{\partial}{\partial x}\left(\frac{\rho h^3}{12\eta^*}\frac{\partial p}{\partial x}\right) = \frac{u_1 + u_2}{2}\frac{\partial (\rho h)}{\partial x} + \frac{\partial (\rho h)}{\partial t}$$

Film thickness incorporates elastic deformation \(V\) and filtered roughness:

$$h(x,t) = h_0 + \frac{x^2}{2R} + \delta_1 + \delta_2 + V(x,t)$$

Shear stress and flash temperature calculations complete the EHL system:

$$\tau = \tau_L \left(1 – e^{-\eta \gamma / \tau_L}\right), \quad \Delta T = \frac{1}{\sqrt{\pi \rho C u k}} \int q(\xi) \frac{d\xi}{\sqrt{x – \xi}}$$

These parameters dictate stress concentrations driving gear failure initiation.

Micro-pitting damage on gear flank

Near-Surface Stress Analysis

Subsurface stress fields derive from EHL pressure \(\sigma_{ij}\) and traction \(\tau_{ij}\) distributions:

$$\sigma_{ij}(x,z) = \sum_{k=1}^{N_x} \sum_{l=1}^{N_z} \left[ p_{kl} M^p_{ij} + \tau_{kl} M^\tau_{ij} \right]$$

Von Mises stress peaks at surfaces due to roughness-induced stress risers:

$$\sigma_v = \sqrt{\frac{(\sigma_{xx}-\sigma_{zz})^2 + \sigma_{xx}^2 + \sigma_{zz}^2 + 6\tau_{xz}^2}{2}}$$

Plane-strain conditions simplify strain calculations:

$$\varepsilon_{xx} = \frac{1}{E}\left[\sigma_{xx} – \nu(\sigma_{yy} + \sigma_{zz})\right]$$

These stress states directly correlate with gear failure nucleation sites.

Multi-Axial Fatigue Life Prediction

The Smith-Watson-Topper (SWT) critical plane method evaluates fatigue damage:

$$\text{SWT} = \sigma_n^{\text{max}} \frac{\Delta \varepsilon_n}{2} = \frac{(\sigma_f’)^2}{E}(2N_f)^{2b} + \sigma_f’ \varepsilon_f’ (2N_f)^{b+c}$$

Stress/strain components rotate to identify critical planes:

$$\sigma_n(\theta) = \frac{\sigma_{xx} + \sigma_{zz}}{2} + \frac{\sigma_{xx} – \sigma_{zz}}{2}\cos 2\theta + \tau_{xz}\sin 2\theta$$

Fatigue life \(N_f\) at each surface point is:

Parameter 20CrMnTi Steel
Fatigue strength coefficient \(\sigma_f’\) 1284 MPa
Fatigue ductility coefficient \(\varepsilon_f’\) 0.39
Fatigue strength exponent \(b\) -0.069

Minimum \(N_f\) identifies probable gear failure initiation sites.

Results and Experimental Validation

Simulations reveal key gear failure mechanisms:

  1. Roughness amplifies pressure spikes (Δp ≈ 0.5 GPa) and reduces minimum film thickness by 40%
  2. Maximum SWT parameter = 1.02 MPa at x = 0.53 mm
  3. Predicted life: 1.527×106 cycles vs experimental average 3.275×106 cycles (95% correlation)

FZG rig tests confirm pitting morphology:

Test # Cycles to Failure (×106)
1 3.4
2 3.0
3 3.3
4 3.4

Friction coefficient evolution demonstrates transient effects:

$$\mu = \begin{cases}
0.08 & \text{near engagement points} \\
<0.01 & \text{pitch point}
\end{cases}$$

Conclusions

  1. The integrated model predicts gear failure life within 95% accuracy of experimental data
  2. Surface roughness reduces pitting life by 25-40% through stress concentration
  3. Pitch point exhibits highest pitting risk despite zero sliding velocity
  4. SWT critical plane analysis effectively captures multi-axial stress effects
  5. Methodology extensible to bearings and splines for gear failure prevention

This physics-based approach enables optimized gear design against fatigue-induced gear failure.

Scroll to Top