Research on Planar Spiral Toothed Line Cylindrical Gears and High Efficiency Machining Device

This paper proposes a novel cylindrical gear with planar spiral tooth traces that demonstrates superior anti-deflection characteristics compared to traditional spur and helical gears. The mathematical model and machining methodology are systematically analyzed through theoretical derivation and experimental validation.

1. Geometric Model and Mathematical Foundation

The planar spiral toothed cylindrical gear features asymmetric curvature radii between concave and convex flanks, with key parameters defined as:

$$R_{\text{concave}} = R_T + \frac{\pi m}{4}$$
$$R_{\text{convex}} = R_T – \frac{\pi m}{4}$$

Parameter Symbol Equation
Module m Standard value
Pressure angle α 20° (standard)
Tooth width B B < 2R_T·sin(θ_max)
Tool radius R_T R_T ≥ 1.5B

2. Anti-Deflection Characteristics

Finite element analysis reveals significant advantages in load distribution:

Gear Type Max Stress (MPa)
Ideal
Max Stress (MPa)
0.1° Error
Spur Gear 110.1 220.8
Helical Gear 72.4 420.8
Planar Spiral 47.2 147.9

The contact ratio calculation combines axial and transverse components:

$$\varepsilon_{\gamma} = \varepsilon_{\alpha} + \varepsilon_{\beta} = \frac{1}{2\pi}\left[z_1(\tan\alpha_{a1} – \tan\alpha_t) + z_2(\tan\alpha_{a2} – \tan\alpha_t)\right] + \frac{B \cdot \cos\beta}{p_bt}$$

3. Full Tooth-Width High-Speed Machining

The innovative machining method achieves continuous generation through synchronized motions:

$$\omega_C = \frac{\omega_D}{Z}$$
$$v_x = \frac{m \cdot Z}{2} \cdot \omega_s$$

Key process parameters:

Process Cutting Speed Feed Rate Tool Life
Roughing 200-250 m/min 0.15 mm/tooth 120 min
Finishing 300-350 m/min 0.08 mm/tooth 90 min

4. Experimental Verification

Prototype testing confirms the machining efficiency improvements:

$$T_{\text{machining}} = \frac{Z \cdot B}{n \cdot f_z} + T_{\text{indexing}}$$

Comparative results with m=5 gear:

Method Time (min) Surface Ra (μm)
Hobbing 160 3.2
Proposed 35 1.6

5. Dynamic Contact Analysis

The modified Hertz contact stress formula for planar spiral cylindrical gears:

$$\sigma_H = Z_E \cdot Z_H \cdot Z_{\varepsilon} \cdot \sqrt{\frac{F_t \cdot K_A \cdot K_V \cdot K_{H\beta}}{b \cdot d_1} \cdot \frac{u+1}{u}}$$

Where the load distribution factor shows 18-22% improvement over helical gears:

$$K_{H\beta} = 1.05-1.15 \quad vs \quad 1.25-1.35 \ (\text{helical})$$

The developed cylindrical gear technology demonstrates superior performance in multiple aspects:

  1. 28-35% higher load capacity than equivalent helical gears
  2. 50-60% reduction in axial thrust forces
  3. 40-45% improvement in machining efficiency
  4. 30-40% longer fatigue life under misalignment conditions
Scroll to Top