Research on the Inverse Algorithm for Machine Tool Machining Parameters of Spiral Bevel Gears

We investigate the inverse algorithm for determining pinion machining parameters in spiral bevel gears. The tooth surface equation for spiral bevel gears generated by the modified-roll method is derived, and a least squares optimization model is established to achieve the predesigned target surface. Three distinct algorithms are implemented and compared: the generalized inverse matrix method, truncated singular value decomposition, and the Levenberg-Marquardt (L-M) iterative algorithm with trust region strategy.

Theoretical Tooth Surface Formulation

The cutting cone surface Σp in coordinate system Sp is expressed as:

$$ \mathbf{r_p} = \begin{bmatrix} (R_p + u \sin \alpha_1) \cos \theta \\ (R_p + u \sin \alpha_1) \sin \theta \\ -u \cos \alpha_1 \end{bmatrix} $$

where \(u\) and \(\theta\) are surface parameters, \(R_p\) is cutter point radius, and \(\alpha_1\) is tool pressure angle. The coordinate transformation from machine tool to workpiece system is governed by:

$$ \mathbf{r_1}(u,\theta,\phi_p) = \mathbf{M_{1b}}(\phi_1) \mathbf{M_{bh}} \mathbf{M_{hm}} \mathbf{M_{mc}} \mathbf{M_{cp}}(\phi_p) \mathbf{r_p}(u,\theta) $$

The meshing equation follows from differential geometry principles:

$$ f(u, \theta, \phi_p) = (\mathbf{r_{1,u}}, \mathbf{r_{1,\theta}}, \mathbf{r_{1,\phi_p}}) $$

where subscripts denote partial derivatives. For modified roll machining, the pinion rotation angle \(\phi_1\) relates to cradle rotation \(\phi_p\) through:

$$ \phi_1 = m_{1p} (\phi_p – C\phi_p^2 – D\phi_p^3) $$

with \(m_{1p}\) as roll ratio, and \(C\), \(D\) as modification coefficients.

Deviation Modeling and Optimization

Discrete tooth surface points for machining parameters \(\mathbf{d} = [\alpha_1, R_p, S_r, q_1, \gamma_1, X_B, E_m, X_G, m_{1p}, C, D]^T\) are defined by position and normal vectors:

$$ \mathbf{p_i} = \mathbf{p_i}(\varepsilon_i, \mathbf{d}), \quad \mathbf{n_i} = \mathbf{n_i}(\varepsilon_i, \mathbf{d}) \quad (i=1,\dots,m) $$

The deviation vector \(\mathbf{h(d)} = [h_1(\mathbf{d}), \dots, h_m(\mathbf{d})]^T\) between target surface \(\mathbf{p^*_i}\) and initial surface satisfies:

$$ \mathbf{p^*_i} = \mathbf{p_i} + \mathbf{n_i} h_i $$

The nonlinear system for surface parameters is solved via:

$$ \begin{cases}
[\mathbf{p^*_i} – \mathbf{p_i}(\varepsilon_i, \mathbf{d})] \cdot \mathbf{p_{i,\theta_i}}(\varepsilon_i, \mathbf{d}) = 0 \\
[\mathbf{p^*_i} – \mathbf{p_i}(\varepsilon_i, \mathbf{d})] \cdot \mathbf{p_{i,u_i}}(\varepsilon_i, \mathbf{d}) = 0 \\
f(\varepsilon_i, \mathbf{d}) = 0
\end{cases} $$

yielding the residual error:

$$ h_i = [\mathbf{p^*_i} – \mathbf{p_i}(\varepsilon_i, \mathbf{d})] \cdot \mathbf{n_i}(\varepsilon_i, \mathbf{d}) $$

The optimization minimizes sum of squared residuals:

$$ \min f(\mathbf{d}) = \frac{1}{2} \mathbf{h}^T(\mathbf{d}) \mathbf{h}(\mathbf{d}) $$

Initial Gear Blank Parameters
Parameter Pinion Gear
Number of teeth 23 65
Module (mm) 3.9
Spiral angle (°) 25
Hand of spiral RH LH
Shaft angle (°) 90
Pitch angle (°) 19.4861 70.5139

Parameter Identification Algorithms

The Jacobian matrix \(\mathbf{J}\) of residual vector \(\mathbf{h}\) contains sensitivity coefficients:

$$ \mathbf{J} = \frac{\partial \mathbf{h}}{\partial \mathbf{d}} \quad (\in \mathbb{R}^{m \times n}), \quad J_{ij} = -\frac{\partial \mathbf{p_i}}{\partial d_j} \cdot \mathbf{n_i} $$

Generalized Inverse Method

Parameter adjustment solves \(\mathbf{S} \Delta \mathbf{d} = \mathbf{h}\) via pseudoinverse:

$$ \Delta \mathbf{d} = (\mathbf{S}^T\mathbf{S})^{-1} \mathbf{S}^T \mathbf{h} $$

Truncated SVD Method

Singular value decomposition \(\mathbf{S} = \mathbf{U\Sigma V}^T\) filters small singular values to stabilize solutions.

Levenberg-Marquardt Algorithm

The trust-region based L-M iteration step is:

$$ \mathbf{d_{k+1}} = \mathbf{d_k} – (\mathbf{G_k} + \mu_k \mathbf{I})^{-1} \mathbf{g_k} $$

where \(\mathbf{g_k} = \mathbf{J_k^T h_k}\), \(\mathbf{G_k} = \mathbf{J_k^T J_k}\), and \(\mu_k\) is dynamically adjusted using trust region ratio \(\eta_k\):

$$ \eta_k = \frac{f(\mathbf{d_k}) – f(\mathbf{d_k} + \Delta \mathbf{d_k})}{q(\mathbf{0}) – q(\Delta \mathbf{d_k})} $$

with \(q\) as quadratic approximation model. The damping parameter updates as:

$$ \mu_{k+1} = \begin{cases}
\mu_k / c & \eta_k \geq 0.75 \\
\mu_k & 0.25 \leq \eta_k < 0.75 \\
c \mu_k & \eta_k < 0.25
\end{cases} \quad (c \in \mathbb{N}) $$

Initial Machine Settings for Pinion
Parameter Value
Pressure angle (°) 22.5
Cutter radius (mm) 92.8943
Radial distance (mm) 110.7413
Angular position (°) 50.0484
Roll ratio 0.3484

Numerical Validation

A spiral bevel gear pair with design contact ratio 1.44 was modified to target surface (contact ratio 1.75). Initial deviation sum of squares was \(f_0\) = 0.0845 mm². The identified parameters and residual errors are compared below:


Deviation topography between target and initial surfaces

Identified Parameters by Different Algorithms
Parameter Generalized Inverse Truncated SVD L-M Algorithm
Cutter radius (mm) 90.5924 92.1837 92.2411
Radial distance (mm) 111.8262 110.2901 109.6558
Angular position (°) 49.8765 49.5114 49.5837
Roll ratio 0.3410 0.3463 0.3483
Performance Comparison of reverse gear Algorithms
Algorithm Max error (μm) Sum of squared errors (mm²)
Generalized inverse 21 1.4723×10⁻³
Truncated SVD 17 8.2969×10⁻⁴
L-M with trust region 2 1.4993×10⁻⁵

The L-M algorithm reduces surface deviation by 98.2% compared to truncated SVD, demonstrating superior reverse gear capability for precision tooth surface approximation. Contact pattern analysis confirms the reverse gear solution achieves the target contact ratio of 1.74 (0.57% deviation).

Conclusions

We establish a complete mathematical framework for reverse gear parameter identification in spiral bevel gear machining. The trust-region enhanced L-M algorithm demonstrates:

  1. 98.2% lower residual error versus truncated SVD method
  2. Precise control of contact ratio (0.57% deviation)
  3. Stable convergence with physically realizable parameters

This reverse gear methodology enables active modification design and deviation correction for high-performance spiral bevel gears. Future work will extend the algorithm to account for machine kinematics constraints during parameter optimization.

Scroll to Top