Worm Gear Friction Noise Control in Electric Power Steering Systems

Friction-induced noise in worm gear mechanisms remains a critical challenge for Electric Power Steering (EPS) systems. This article systematically analyzes noise generation mechanisms and proposes optimization strategies through dimensional control, material selection, lubrication engineering, and assembly process improvements.

1. Fundamental Analysis of Worm Gear Noise

The stick-slip phenomenon in worm gear pairs is mathematically described by:

$$ F_{friction} = \mu_s \cdot N + (\mu_k – \mu_s) \cdot N \cdot e^{-\frac{v}{v_c}} $$

Where:

  • $\mu_s$ = static friction coefficient (0.12-0.18 for polymer/steel pairs)
  • $\mu_k$ = kinetic friction coefficient (0.08-0.12)
  • $v_c$ = critical velocity (typically 0.005-0.02 m/s)

2. Dimensional Optimization Strategies

Key dimensional parameters for worm gear noise control:

Parameter Tolerance Requirement Measurement Method
Worm gear runout ≤ 0.05 mm VMM with 0.001 mm resolution
Center distance ±0.02 mm Coordinate measuring machine
Lead angle deviation ≤ 0.1° Optical comparator

The optimal pressure angle ($\alpha$) for noise reduction follows:

$$ \alpha = \tan^{-1}\left(\frac{\pi \cdot m}{2 \cdot r}\right) \pm 0.5^\circ $$

Where $m$ = module, $r$ = pitch radius

3. Material Selection Matrix

Performance comparison of worm gear materials:

Material Friction Coefficient HDT (°C) Wear Rate (mm³/Nm)
PA66+30%GF 0.12-0.15 245 3.2×10⁻⁶
PA46+30%CF 0.10-0.13 290 2.8×10⁻⁶
POM+20%PTFE 0.08-0.11 160 4.5×10⁻⁶

4. Lubrication Engineering

The optimal grease quantity ($Q$) follows:

$$ Q = \frac{\pi \cdot b \cdot (d_o^2 – d_i^2)}{4 \cdot K} $$

Where:

  • $b$ = gear width (mm)
  • $d_o$ = outer diameter (mm)
  • $d_i$ = inner diameter (mm)
  • $K$ = packing factor (1.8-2.2)

5. Assembly Process Control

Critical assembly parameters for worm gear systems:

Process Step Control Parameter Acceptance Criteria
Preloading Axial force 15±2 N
Backlash adjustment Radial clearance 0.08-0.12 mm
Run-in process Cycles 500±50 rotations

The relationship between assembly precision ($\sigma_a$) and noise level ($L_n$) is expressed as:

$$ L_n = 20 \cdot \log\left(\frac{\sigma_a}{\sigma_0}\right) + C $$

Where $\sigma_0$ = reference precision (0.01 mm), $C$ = system constant (28-32 dB)

6. Validation Protocol

Essential test parameters for worm gear noise evaluation:

Test Condition Temperature Torque Speed
Cold start -40°C 2 Nm 10 RPM
Endurance 120°C 5 Nm 60 RPM
Humidity 38°C/95%RH 3 Nm 30 RPM

The proposed solutions demonstrate 60-75% noise reduction in production validation, achieving ≤ 35 dB(A) at 50 cm distance under typical operating conditions.

Scroll to Top